Normal.


Bilden visar :
Ett koordinatsystem, en enhetscirkel med radien 1.0 i origo samt två vektorer (orange) och vektorernas normaler (grön).

Till startsidan Föregående sida Innehåll

En vektornormal motsvaras av en punkt på enhetscirkeln ( |q| = 1.0 ) och anger riktningen (vinkeln) för en vektor. Normalen kan fås genom att beräkna : z / |z|.

För att genomföra det så krävs det att man vet hur man utför följande operationer :

Beräkna absolutvärdet av ett komlext tal.

Fractalus anges normalen vanligtvis på formatet :

Komplex variabel : q.
Realdel          : o = Re q.
Imaginärdel      : p = Im q.

För att få normalen för ett komplext tal z så beräknas först absolutvärdet av z = |z| och sedan fås o och p för normalen q genom att dela vektorns real (x) och imaginärdel (y) med det erhållna absolutvärdet :

: Först defineras dom ingående variablerna :
z = [x, y] : ursprungsvektorn :
q = [o, p] : normalvektorn :
: Sedan beräknas normalen :
|z| = Roten_ur [x · x + y · y]
o = x / |z|
p = y / |z|

Man kan även använda Cos och Sin för önskad vinkel som normal : q = [Cos [v], Sin [v]].

Se även :

Vektorgeometri, Rotation